A combined SQP-IPM algorithm for solving large-scale nonlinear optimization problems
نویسندگان
چکیده
We consider a combined IPM-SQP method to solve smooth nonlinear optimization problems, which may possess a large number of variables and a sparse Jacobian matrix of the constraints. Basically, the algorithm is a sequential quadratic programming (SQP) method, where the quadratic programming subproblem is solved by a primal-dual interior point method (IPM). A special feature of the algorithm is that the quadratic programming subproblem does not need to become exactly solved. To solve large optimization problems, either a limited-memory BFGS update to approximate the Hessian of the Lagrangian function is applied or the user specifies the Hessian by himself. Numerical results are presented for the 306 small and dense Hock-Schittkowski problems, for 13 large semi-linear elliptic control problems after a suitable discretization, and for 35 examples of the CUTEr test problem collection with more than 5,000 variables.
منابع مشابه
A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملSequential Quadratic Programming forLarge - Scale Nonlinear Optimization ?
The sequential quadratic programming (SQP) algorithm has been one of the most successful general methods for solving nonlinear constrained optimization problems. We provide an introduction to the general method and show its relationship to recent developments in interior-point approaches. We emphasize large-scale aspects.
متن کاملSequential Quadratic Programming �
Introduction Since its popularization in the late s Sequential Quadratic Program ming SQP has arguably become the most successful method for solving nonlinearly constrained optimization problems As with most optimization methods SQP is not a single algorithm but rather a conceptual method from which numerous speci c algorithms have evolved Backed by a solid theoretical and computational foundat...
متن کاملA Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)
This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...
متن کاملSNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. We discuss an SQP algorithm th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Letters
دوره 9 شماره
صفحات -
تاریخ انتشار 2015